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We study transport through a triple quantum dot in a triangular geometry with applied bias such that both
singly- and doubly-charged states participate. We describe the formation of electronic dark states—coherent
superpositions that block current flow—in the system, and focus on the formation of a two-electron dark state.
We discuss the conditions under which such a state forms and describe the signatures that it leaves in transport
properties such as the differential conductance and shot noise.
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I. INTRODUCTION

Dark states �DSs� are a quantum-mechanical phenomenon
originally discovered as a dark line in the fluorescence of
sodium atoms.1 For a particular configuration of atomic tran-
sitions and driving fields,1–3 relaxation can drive the atomic
electron into a superposition state that is completely decou-
pled from the light field—this is the dark state.

The concept of the DSs has been generalized to mesos-
copic transport.4–10 In contrast to quantum optics, such sys-
tems are connected to electron reservoirs, and enable one to
study the influence of DSs on nonequilibrium transport prop-
erties such as current, shot noise,11 and full counting
statistics.12 The first transport DS was proposed in a system
similar to those of quantum optics, in which microwave
fields were used to create a DS in a double quantum dot.4,5

Subsequently, an all-electronic mechanism for the creation of
DS has been described,8–10 in which coherent tunneling of
electrons plays the role of the �classical� driving fields. The
analyzed system was a triple quantum dot �TQD� in a trian-
gular geometry in the strong Coulomb blockade regime.

In the afore-mentioned systems, the DS is a single-
electron state formed by interaction with the environment. In
the current work, we investigate the effects of a second elec-
tron on DS formation. This we do in a mesoscopic transport
context, where a change in the chemical potential of the res-
ervoirs can simply lead to the inclusion of two-electron states
in the transport window. In particular we study the influence
of two-electron states on the transport through a TQD. The
inclusion of doubly-charged states is particularly important
because the formation of the original single-electron DS de-
pends not just on destructive interference, but also on the
strong Coulomb blockade. The inclusion of two-electron
states might therefore be expected to inhibit the appearance
of DSs in such systems. However, as we will show, dark-
state formation is in fact possible with two electrons, but
only under certain circumstances. Even if the formation of
the two-electron DS is incomplete, partial dark states still
leave obvious signatures in the transport properties such as
negative differential conductance and super-Poissonian shot
noise.

This work comes against a backdrop of growing theoret-
ical interest in the transport properties of triple quantum
dots,13–16 and in the suppression of current due to interfer-
ence phenomena17–19 as distinct from other current blockade

mechanisms in quantum dots �QDs� such as Coulomb,20

spin,21 isospin,22 and Franck-Condon23 blockades. This work
also has experimental relevance as a number of groups have
published results of transport measurements on TQDs.24–28

The finite-bias calculations that we present here should fa-
cilitate the experimental investigation of dark-state effects
such as the break up of Coulomb blockade diamonds in the
stability diagram of the TQD due to one-and two-electron
DSs.

II. MODEL

Our system consists of three QDs arranged in a triangular
geometry with a single relevant orbital level in each dot �see
Fig. 1�. QD1 and QD2 are connected to electron source res-
ervoirs and QD3 is connected to a drain reservoir. In the
infinite-bias limit, the rate at which electrons enter and leave
the TQD is �, which we assume the same for all three leads.
The levels in QD1 and QD2 are coupled coherently to QD3
with a tunnel amplitude TC.

We assume that the system is in the Coulomb blockade
regime, and we adjust the lead chemical potentials such that
the only relevant charge states have zero, single, and double
excess electrons. We incorporate the single-electron charging
energies into the energies of single-electron orbital levels.
With the addition of a second electron we associate an addi-
tional charging energy Uij, with i� j=1,2 ,3, describing the
locations of the two electrons.
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FIG. 1. �Color online� The triple quantum dot �TQD� in trian-
gular geometry is connected to two sources and one drain. In the
infinite-bias limit, the rate at which electrons enter and leave the
TQD is �, the same for all three leads. The QDs are coupled to each
other by the coherent tunnel amplitudes TC as shown. Zero, one, or
two electrons are allowed to be in the TQD at a time. The charging
energy between two electrons in the same QD, e.g., �a� U22 is, in
general, larger than for two electrons in different QDs, e.g., �b� U13.
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A. Hamiltonian

The system Hamiltonian ĤD of the closed TQD is a
Hubbard-type model with three sites,

ĤD = �
i�

Ein̂i� + TC�
�

�d1�
† d3� + d2�

† d3� + H.c.� + �
i

3

Uiin̂i↑n̂i↓

+ �
i,j,i�j

3

�
���

Uijn̂i�n̂j��, �1�

where di� is the annihilation operator and n̂i� is a corre-
sponding number operator of an electron in dot i with spin �.
We assume spin-independent energy levels and denote the
energy of the single-electron level of the QD i as Ei. Sepa-

rating the Hamiltonian ĤD into one-and two-electron parts,

ĤD = H↑ + H↓ + H↑↑ + H↓↓ + H↑↓, �2�

we explicitly construct the corresponding matrices in a basis
of relevant many-body states. With the single-electron basis
��1�� , �2�� , �3���, the Hamiltonians H↑ for a single spin-up
electron in the TQD and H↓ for a spin-down electron in the
TQD are

H↑ = H↓ = �E1 0 TC

0 E2 TC

TC TC E3
	 . �3�

The parallel-spin Hamiltonians H↑↑ and H↓↓ in the two-
electron basis ��1�2�� , �1�3�� , �2�3��� read

H↑↑ = H↓↓ = �E1 + E2 + U12 TC − TC

TC E1 + E3 + U13 0

− TC 0 E2 + E3 + U23
	 .

�4�

The opposite-spin two-electron Hamiltonian H↑↓ is a 9�9
matrix, which is given in Appendix A. We denote the basis of
the above matrices the “localized basis.” In subsequent cal-
culations we set all Ei=E0+EGate=−eVGate �in the infinite-
bias calculations we set EGate=0�.

A key parameter in our discussion of the two-particle dark
state will be the difference between the charging energy U11
and the charging energy U12,

�U 
 U11 − U12, �5�

which we will call the “charging-energy difference.” Since
two electrons in a single QD are closer than two electrons in
different QDs, one expects that the charging energies be-
tween electrons in different QDs �Uij ; i� j� will be smaller
than those for electrons in the same QD �Uii� and thus we
focus here on �U�0 �although note, for example, Ref. 29�.
We will discuss two sets of charging energies: First a highly
symmetric situation where all Uii are equal and all Uij for
i� j are also equal. Although this is the simplest situation, its
high symmetry leads to nongeneric features as we will see.
We therefore consider a second set of charging energies with
U11=U22�U33 and U12�U13=U23, which breaks the sym-
metry and leads to more typical results.

The TQD is connected to three-electron reservoirs that are
described with the Hamiltonian

Ĥres = �
i=1,2,3

�
k,�

�ikcik�
† cik�, �6�

where i labels the reservoirs �1,2=source, 3=drain�. The
TQD and the reservoirs are connected by the tunnel Hamil-
tonian

ĤT = �
i=1,2,3

�
k,�

Vikcik�
† di� + H.c. �7�

We assume spin-independent reservoir energies �ik and tun-
neling amplitudes Vik.

B. Method

We use two different approaches to calculate the current
and the Fano factor of the TQD based on the sequential-
tunneling �i.e., second order in tunneling Hamiltonian, HT�
Master equation.30–32 The two approaches are the following:

1. Generalized master equation

In the infinite-bias limit, the second-order Born-Markov
master equation is believed to be exact for flat bands pro-
vided that coherences between system states are explicitly
included.33,34 In the localized basis, this approach leads to the
generalized master equation �GME�. We assume that the
chemical potentials are positioned far from other relevant
energies, �	i�
Uij ,TC ,Vik ,Ei, but such as to exclude three-
electron states and states in which an electron occupies an
excited orbital state of the QDs. We use the TQD Hamil-
tonian HD and approximate the chemical potential of the
sources to be 	1,2=� and the chemical potential of the drain
to 	3=−�. In the GME approach, the density matrix ��t�
contains entries for the populations of the empty state, and
one- and two-electron states in the localized basis. Further-
more, ��t� also contains all coherences within each charge
sector. Within the GME, the time evolution of the density
matrix is then given by the Lindblad form35

d�

dt
= − i�ĤD,�� + �

�;j=1,2
� j�
dj�

† �dj� −
1

2
dj�dj�

† � −
1

2
�dj�dj�

† �
+ �

�

�3�
d3��d3�
† −

1

2
d3�

† d3�� −
1

2
�d3�

† d3�� . �8�

The second-quantized operators appearing in this equation
are given in the relevant many-body basis in Appendix B. We
assume energy- and spin-independent tunnel rates,

�i� = 2
�
k

�Vik�2��� − �ik� , �9�

with i=1,2 ,3. In the following we set all �i�=�. The Lind-
blad master equation can then be written in superoperator
formalism where the density matrix � is written as a vector.
The equation of motion is then

�̇�t� = M��t� , �10�

where M is the Lindblad superoperator.
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The stationary density matrix of the system is
�0=limt→� ��t� and in practice this is determined as the null
vector of M, which is unique here. For our TQD, the steady-
state current is then given by

�I� = e�
�

�3���3���0�3�� + 2�3↑3↓��0�3↑3↓�

+ �1�3���0�1�3�� + �2�3���0�2�3��

+ �1�3�̄��0�1�3�̄� + �2�3�̄��0�2�3�̄�� . �11�

2. Rate equation in the diagonalized basis

An alternative approach is to first diagonalize the system
Hamiltonian and then write down a rate equation for the
populations of the system eigenstates.36 We describe this ap-
proach as the diagonalized master equation �DME�. Unlike
the GME, this approach is not restricted to the infinite-bias
limit, but the disadvantage is that some of the effects of
coherence on the transport dynamics are lost. In the DME
approach the TQD Hamiltonian HD is first written in diago-
nal form

ĤD = �
k=0

N

�k��k���k� , �12�

where �k is the energy of eigenstate ��k�, and N=21 is the

dimension of ĤD without the empty state. The density matrix
�D�t� in the DME approach contains only the populations of
states ��k� and its time evolution is given by the rate equation

�̇D�t� = W�D�t� , �13�

with elements of the rate matrix given by

Wk�k = �
�,i

�i�� f��k�k + 	i����k�di�
† ��k���

2 + f��k�k − 	i�

����k�di���k���
2 − �

l

N

�f��lk − 	i����l�di�
† ��k��2

+ f��lk + 	i����l�di���k��2���k,�k�� ,

where di� is the tunnel operator of the previous section,
f�x�= �1+ex/kBT�−1 is the Fermi function �with the tempera-
ture T and the Boltzmann constant kB�, and �k�k=�k�−�k is
the Bohr frequency of the transition from ��k� to ��k��.

In this case, the steady-state current is given by

�I� = e�3� �
k�,k=0

N

�f��k�k + 	3����k�d3�
† ��k���

2��D0�k

− f��k�k − 	3����k�d3���k���
2��D0�k� , �14�

with ��D0�k as the kth element of the diagonalized steady-
state density matrix.

In the infinite-bias limit, the Fermi functions of the
sources leads are lim	j→� f��k�k−	 j�=1 and
lim	j→� f��k�k+	 j�=0, j=1,2; and lim	3→−� f��k�k+	3�

=1, and lim	3→−� f��k�k−	3�=0 for the drain. In this limit,
the current is then

�I� = e�3� �
k,k�=0

N

���k�d3�
† ��k���

2��D0�k. �15�

III. STATIONARY TRANSPORT IN THE INFINITE-BIAS
LIMIT

We first consider the infinite-bias limit. It is in this limit
that previous calculations on the single-electron TQD have
been performed8–10 and where we expect the GME to be
exact. We therefore discuss the GME results first and then
return to a comparison of GME and DME calculations in this
limit.

A. Stationary current

Figure 2 shows the stationary current �I� as a function of
the charging-energy difference �U, which we scale with the
tunnel amplitude TC. At the point where the charging-energy
difference vanishes ��U=0� the current is zero. At this point
the system is trapped in the two-electron DS

�dark = ��0���0� , �16�

with

��0� =
1

2
�d1↑

† − d2↑
† ��d1↓

† − d2↓
† ��0� . �17�

For �U=0, ��0� is an exact eigenstate of the two-electron
Hamiltonian. As since this state has no occupation on QD3
the electrons in the TQD cannot leave the TQD to the drain
and no further electrons can enter the TQD due to the Cou-
lomb blockade; this state is completely dark with zero cur-
rent. This situation is analogous to the single-electron DS but
here we have two electrons in forming a product state of a
spin-up and spin-down single-particle DSs.

The current in the GME approach for �U�0 has a dark
resonance profile with a clear antiresonance. The width of
this antiresonance as a function of the tunnel rate is shown in
Fig. 3. For small ratios of � /TC�1 the gap increases linearly
from � /TC=0 �corresponding to the limit of TC→� where
the DME current and the GME current coincide�. For higher
ratios of � /TC the size of the gap reaches a maximum at
� /TC�3.7, and then decreases.

B. Shot noise

In the infinite-bias limit, we can write down the
n-resolved master equation

�̇�n� = MJ�
�n−1� + M0��n� �18�

for ��n�; the partial density matrix of the system after n elec-
trons have passed though the TQD.37 Here the total Liouvil-
lian M has been decomposed into two parts: M0, which de-
scribes the evolution of system without electron transfer to
the drain, and MJ, the “jump operator,” which transfers an
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electron to the drain. The matrix elements of the jump op-
erator are obtained from

MJ� = �
�=↑,↓

�3�d3��d3�
† �19�

in the GME approach, and as

�MJ�k�k = �
�=↑,↓

�3����k�d3�
† ��k���

2 �20�

in the infinite-bias limit of the DME.
The advantage of the n-resolved master equation is that it

can be used calculate not only the stationary current �given
by �I�=e Tr�MJ�0� in this language�, but also the full count-
ing statistics of the current.30 Here we concentrate on the

shot noise,11 and from the method used in Ref. 12, the zero-
frequency Fano factor F�0� can be expressed as

F�0� = 1 −
2

�I��k=1

NM Ck

�k
, �21�

with Ck=��=0
N ��,�,	=0

NM �MJ���v�k�vk��−1�MJ��	��0�	 and �k
the eigenenergies ��0=0�. Here, �MJ��� are the components
of the jump operator, v�k are components of the matrix of
eigenvectors of the Liouvillian M, and ��0�	 is the 	th com-
ponent of the steady-state density matrix. N is the number of
populations in the density matrix and NM is the dimension of
M. In our GME calculation was NM =117 and in the DME
NM =21 and in both cases N=21.

Figure 4 shows the Fano factor F�0� as a function of the
charging-energy difference �U /TC. Two zones of super-
Poissonian behavior are observed: in the region near the dark
state �U=0 and also for large charging-energy difference
�U /TC�1. Enhancement of the Fano factor near the dark
state is expected and can be understood as a dynamical chan-
nel blockade38 with the dark state playing the role of the
weakly coupled channel. The value of the Fano factor near
�U=0 is �6, which is roughly twice that found for the
single-electron dark state.9 The precise mechanism behind
the highly super-Poissonian behavior at large �U /TC is not
yet clear. However, it is a quantum coherent phenomenon, as
the Fano factor drops markedly when dephasing is
included.40

C. Difference between GME and DME approaches

For asymmetric charging energies, the current, �Fig. 2�b��
and the Fano factor �Fig. 4�b�� of the DME calculation show
the same general features as the GME results, with qualita-
tive differences becoming more evident for small values of
TC /�. In the symmetric case �Fig. 2�a��, however, a qualita-
tive difference between the GME and DME results is ob-
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FIG. 2. �Color online� Stationary current �I� through the TQD as a function of the charging-energy difference scaled with the tunnel
amplitude �U /TC for different ratios of TC /� and for two choices of charging energies. Results are shown for both GME and DME
calculations �the DME calculations are independent of the ratio TC /�� and both calculations show that at �U=0, the current is zero. This is
attributed to the formation of the two-electron dark state. In �a� �symmetric charging energies� the GME calculation shows an antiresonance
of finite width about the DS, whereas in the DME calculation the DS appears as a point of discontinuity. For asymmetric charging energies,
�b�, both calculations show an antiresonance of finite width about the DS.
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the GME approach with the parameters of Fig. 2�a�. The size of the
gap is given by the width of the antiresonance when the current has
half the size of the maximum �Imax� /2�e��.

PÖLTL, EMARY, AND BRANDES PHYSICAL REVIEW B 80, 115313 �2009�

115313-4



served in the region of the DS. Both calculations show a
complete current suppression at �U=0 but, whereas the GME
shows a broad antiresonance about the point �U=0, the DME
shows a discontinuity at this point. The discontinuous behav-
ior of the symmetric DME current is a reflection of the in-
creased degeneracy of the TQD eigenstates when all Uij are
equal. At this point, the dark state ��0� resides in a degener-
ate subspace with two other orthogonal states,

��+� =
1

2
�− �1↑3↓� − �2↑3↓� + �3↑1↓� + �3↑2↓�� , �22�

��−� =
1

2�2
�− �1↑1↓� − �1↑2↓� − �2↑2↓� − �2↑1↓��

+
1
�2

�3↑3↓� . �23�

Due to this degeneracy, one has, in principle, a freedom of
choice as to which combination of these states to treat as the
eigenstates to be entered into the DME machinery. Different
choices result in different results. In obtaining the plots of
Figs. 2�a� and 4�a� we chose the combinations as above
since, from the GME analysis, we expect a DS to form.
However, without this a priori knowledge, any linear com-
bination of the above vectors appears as good as any other,
and if any combination other than that given explicitly above
is chosen, the dark state will not be observed since all three
eigenstates will have a finite population on QD3. We believe
that this undesirable feature of the DME should be removed
by a more complete second-order master-equation
treatment,41–45 in which the coherences are handled properly.
For Uii�Uij, �i� j� or for asymmetric charging energies as
in Fig. 2�b�, this degeneracy is lifted, the choice of eigen-
states is unique, and the above problems do not occur.

The Fano factor for symmetric charging energies calcu-
lated with the DME in Fig. 4�a� is also interesting because,
although it reproduces the high values at �U /TC�1, its be-

havior is Poissonian, F�0�=1, at small values of �U /TC
where the GME shows super-Poissonian behavior. It appears
then that, for symmetric charging energies, the effects of the
two-electron dark state in the in the DME approach are re-
stricted solely to the singular point �U /TC=0.

IV. FINITE BIAS

As long as the temperature is low and all energy levels of
the TQD are well within the transport window, the results of
the GME in the infinite-bias limit are reliable.33,34 However,
the GME is not applicable away from this situation, and in
this case we employ solely the DME. Our finite-bias calcu-
lations allow us to construct stability diagrams for the system
and determine the implications of the one- and two-particle
dark states for tunnel spectroscopy measurements.46

We first consider the situation with �U=0 such that the
dark state is an eigenstate of the TQD Hamiltonian. In accor-
dance with the above discussion, we choose asymmetric
charging energies such that methodical problems are not an
issue. The resulting current is shown in Fig. 5 and the differ-
ential conductance in Fig. 6. The bias voltage VBias is chosen
symmetric to VGate �hence 	l=VBias /2 and 	l=−VBias /2�. For
negative bias voltage, VBias�0, the electrons enter the sys-
tem through QD3 and leave it through QD1 or QD2 and the
lower halves of Figs. 5 and 6 show the familiar diamonds of
the Coulomb blockade. The light-colored lines in the differ-
ential conductance diagram that lie outside the diamonds cor-
respond to excitation energies of the TQD.

For VBias
0, this picture changes drastically and the sta-
bility diagram is dominated by the effects of the DSs. Both
one- and two-electron DSs are visible. In the current diagram
they show up as breaks in the Coulomb diamonds, and in the
differential conductance they give rise to clear lines of nega-
tive differential conductance �NDC�. Note that, even for
large VBias
0, it is possible that no current flows. This
strong asymmetry between VBias�0 and VBias
0 demon-
strates that the dark states can lead to a strong rectification of
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FIG. 4. �Color online� The Fano factor F�0� as a function of the charging-energy difference with results for both GME and DME
calculations. From the GME calculation for both �a� symmetric and �b� asymmetric charging energies, we observe that the shot noise is
highly super-Poissonian �F�0�
1� both near the dark state �U /TC�0 and in the limit of �U /TC�1. In the DME approach, only the
asymmetric case shows super-Poissonian behavior near the dark state. The Fano factor in �a� is Poissonian for �U /TC�1.
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the current. For small charging detuning �U�0, the stability-
and the conductance-diagrams look similar to Figs. 5 and 6
but with a small current flowing along the line DS2.

It is also of interest to consider what happens in this sys-
tem far from the dark resonance. A differential conductance
diagram for this situation with symmetric charging energies
is shown in Fig. 7. Note that in this figure, we are far from
the DS such that the DME calculation should be reliable,
even for symmetric charging energies. With this set of pa-
rameters, the one-electron DS can still form and this is

clearly observed as a break in the Coulomb diamond and a
diagonal line of negative differential conductance. Moreover,
traces of two-electron dark states are still visible, manifest as
lines of negative differential conductance in the two-electron
sector. These occur because, although the full dark-state is no
longer an eigenstate of the system Hamiltonian, there still
exists related states which, although not completely dark, can
only support a comparatively small current. In particular,
there is one NDC line �marked NC2� in the two-electron
region of the stability diagram for which the suppression is
particularly strong. The corresponding stationary density ma-
trix has very low occupation on the third QD and predomi-
nantly given by �stat���D2���D2� with

��D2� =
1
�2

�d1↑
† d1↓

† − d2↑
† d2↓

† ��0� . �24�

This state is similar to the dark state of Eq. �17� but with
only contributions with two electrons in each dot. With an
increasing difference between Uii and Uij for j� i the line of
negative differential conductance which corresponds to NC2
becomes stronger and also the weight of the state Eq. �24�
increases.

V. CONCLUSIONS

We have shown in this article that the TQD in transport
can exhibit current suppression due to a two-particle DS.
This represents an extension of the single-electron DS con-
cept familiar from optics to the multiple-electron domain. In
the TQD, the two-electron DS can exist only under the con-
dition that the charging energies U11=U22=U12 are equal.
Importantly though, even if these energies are not equal,
traces of the DS still remain, and should be observable in
experiment.
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FIG. 5. �Color online� Stability diagram for the TQD with
parameters such that both one- and two-electron dark states can
form; in particular, �U=0. Here the current is plotted as a function
of the source-drain bias voltage VBias and gate voltage VGate. For
positive bias, most electrons enter the system on the left side where
two QDs couple to the environment, and leave to the right side
where one QD is coupled to the environment. Only for this bias
direction can the DSs occur. The DSs are visible as breaks in the
borders of the Coulomb diamonds �marked as DS1 for the one-
electron dark state and as DS2 for the two-electron dark state�; the
gap near the center is due to the single-particle dark-state, that to
the right, the two-particle dark state. The parameters used are:
U11=U22=U12=1 meV, U33=1.2 meV, U13=U23=0.95 meV,
tunnel amplitude TC=0.1 meV, tunnel rate �=10 	eV, and tem-
perature T=150 mK.
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longer form, lines of negative differential conductance are seen in
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Specifically, these traces are a large Fano factor near the
DS and pronounced lines of negative differential conduc-
tance in the stability diagrams. We note that an optical two-
electron DS was presented in Ref. 47. An analogous mesos-
copic transport configuration would not lead to a DS
formation and hence current blockade, since the dark state
has finite occupation of all states in the localized basis.

On a technical level, we have compared the GME and
DME approaches in the infinite-bias limit. We believe that
the gap between these two methods can be effectively
bridged with a more complete second-order master-equation
treatment, e.g., Refs. 41–45. This should enable us to calcu-
late transport properties at finite bias without having to con-
cern ourselves with the discontinuity exhibited by the DME.

Further work includes investigation of dark states with
still higher electron numbers and the influence of magnetic
field.
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APPENDIX A: OPPOSITE-SPIN TWO-ELECTRON BASIS

In the basis ��1↑1↓� , �1↑2↓� , �1↑3↓� , �2↑2↓� ,
�2↑1↓� , �2↑3↓� , ��3↑3↓� , �3↑1↓� , �3↑2↓���, the Hamiltonian
for two electrons of opposite spins reads

H↑↓ =�
2E1 + U11 0 TC 0 0 0 0 TC 0

0 E1 + E2 + U12 TC 0 0 0 0 0 TC

TC TC E1 + E3 + U13 0 0 0 TC 0 0

0 0 0 2E2 + U22 0 TC 0 0 TC

0 0 0 0 E2 + E1 + U12 TC 0 TC 0

0 0 0 TC TC E2 + E3 + U23 TC 0 0

0 0 TC 0 0 TC 2E3 + U33 TC TC

TC 0 0 0 TC 0 TC E3 + E1 + U13 0

0 TC 0 TC 0 0 TC 0 E3 + E2 + U23

	 .

�A1�

APPENDIX B: TUNNEL OPERATORS

The second-quantized operators appearing in Eq. �8� can
be written in the relevant many-body basis as

d3↑ = �0��3↑� − �1↑��1↑3↑� − �2↑��2↑3↑�

+ �1↓��3↑1↓� + �2↓��3↑2↓� + �3↓��3↑3↓� , �B1�

d3↓ = �0��3↓� − �1↓��1↑3↓� − �2↑��2↑3↓�

− �3↑��3↑3↓� − �1↓��1↓3↓� − �2↓��2↓3↓� , �B2�

d1↑
† = �1↑��0� + �1↑2↑��2↑� + �1↑3↑��3↑� + �1↑1↓��1↓�

+ �1↑2↓��2↓� + �1↑3↓��3↓� , �B3�

d2↑
† = �2↑��0� − �1↑2↑��1↑� + �2↑3↑��3↑� + �2↑1↓��1↓�

+ �2↑2↓��2↓� + �2↑3↓��3↓� , �B4�

d1↓
† = �1↓��0� − �1↑1↓��1↑� − �2↑1↓��2↑� − �3↑1↓��3↑�

+ �1↓2↓��2↓� + �1↓3↓��3↓� , �B5�

d2↓
† = �2↓��0� − �1↑2↓��1↑� − �2↑2↓��2↑� − �3↑2↓��3↑�

− �1↓2↓��1↓� + �2↓3↓��3↓� . �B6�
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